Neurocranial development of the coelacanth and evolution of the sarcopterygian head.

  • one.

    Ahlberg, P. E., Clack, J. A. & Luksevics, E. Rapid evolution of the database between Panderichthys and the first tetrapods. Nature 381, 61-64 (1996).

  • two.

    Anthony, J. and Robineau, D. South quelques juvenile charactères de Latimeria chalumnae Smith (Pisces, Crossopterygii Coelacanthidae). C. R. Acad. Sci. Ser re 283, 1739-1742 (1976).

  • 3.

    Millot, J. and Anthony, J. Anatomy of latimeria chalumnae. II. Système Nerveux et Organes des Sens (National Center for Scientific Research, Paris, 1965).

  • Four.

    Smith, J. L. B. A live fish of the mesozoic type. Nature 143, 455-456 (1939).

  • 5.

    Kuratani, S. Development of chondrocranium of the loggerhead turtle, Caretta caretta. Zool. Sci. sixteen, 803-818 (1999).

  • 6

    of beer, g. r. The development of the vertebrate skull (Univ. Chicago Press, Chicago, 1938).

  • 7

    Goodrich, E. S. Studies on the structure and development of vertebrates. Vol. 1 (Macmillan, London, 1930).

  • 8

    Clemente, A. M. et al. The neurocranial anatomy of an early Devonian enigmatic fish sheds light on the early evolution of the Osteichthyan. eLife 7, e34349 (2018).

  • 9

    Janvier, P. First vertebrates (Clarendon, Oxford, 1996).

  • 10

    Lu, J. et al. The first stalk tetrapod known from the Devonian Low of China. Nat. Commun. 3, 1160 (2012).

  • eleven.

    Giles, S. & Friedman, M. Virtual reconstruction of the anatomy of the endocast in the first fish with radial fins (Osteichthyes, Actinopterygii). J. Paleontol. 88, 636-651 (2014).

  • 12

    Lu, J. et al. A Devonian predatory fish provides information on the early evolution of modern sarcopterygians. Sci. Adv. two, e1600154 (2016).

  • 13

    Yu, X. A new porolepiform fish, Psarolepis romeri, gene. et sp. Nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J. Vertebr. Paleontol. 18, 261-274 (1998).

  • 14.

    Andrews, S.M., Long, J.A., Ahlberg, P.E., Barwick, R.E. and Campbell, K. The structure of the sarcopterygian Onychodus jandemarrai north. sp. of Gogo, Western Australia: with a functional interpretation of the skeleton. Trans. R. Soc. Edinb. Sci Earth. 96, 197-307 (2006).

  • fifteen.

    Kuratani, S., Adachi, N., Wada, N., Oisi, Y. and Sugahara, F. Evolutionary and evolutionary significance of the mandibular arch and the precordal / precandibular skull in vertebrates: review of the heterotopic scenario of the evolution of the mandible of gnatóstomo. J. Anat. 222, 41-55 (2013).

  • sixteen.

    Kuratani, S. The neural crest and the origin of the neurocranium in vertebrates. Genesis 56, e23213 (2018).

  • 17

    Clack, J. A. in Important events in the early evolution of vertebrates (series 61 of the special volume of the Systematics Association) (ed. Ahlberg, P. E.) 392-505 (Taylor and Francis, London, 2001).

  • 18

    Kemp, A. Ontogeny of the skull of the Australian Lungfish Neoceratodus forsteri (Osteichthyes: Dipnoi). J. Zool. (Lond.) 248, 97-137 (1999).

  • 19

    Nieuwenhuys, R. et al. (eds) The central nervous system of vertebrates Vols 1-3 (Springer, Berlin, Germany, 1998).

  • twenty.

    Maisey, J. G. in Important events in the early evolution of vertebrates (series 61 of the special volume of the Systematics Association) (ed. Ahlberg, P. E.) 263-288 (Taylor and Francis, London, 2001).

  • twenty-one.

    Kemp, A. Early development of neural tissues and mesenchyme in the Australian Lungfish Neoceratodus forsteri (Osteichthyes: Dipnoi). J. Zool. (Lond.) 250, 347-372 (2000).

  • 22

    Ahlberg, P. E., Clack, J.A., Lukševičs, E., Blom, H. and Zupiņs, I. Ventastega curonica and the origin of the tetrapod morphology. Nature 453, 1199-1204 (2008).

  • 2. 3.

    Mee-Mann, C. the basis of Youngolepis, a pioneer of lower Devonia in Yunnan, southwest China. Doctoral thesis, Univ. Stockholm and Swedish Museum of Natural History (1982).

  • 24

    Pradel, A. et al. Skull and brain of a 300 million year old chimeroid fish revealed by synchrotron holotomography. Proc. Natl Acad. Sci. United States 106, 5224-5228 (2009).

  • 25

    Kruska, D. C. T. The brain of the peregrine shark (Cetorhinus maximus). Brain Behav. Evol. 32, 353-363 (1988).

  • 26

    Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P. and Ahlberg, P. E. A primitive placoderm sheds light on the origin of the face of the vertebrate jaw. Nature 507, 500-503 (2014).

  • 27

    Clement, A.M., Nysjö, J., Strand, R. and Ahlberg, P. E. Brain-endocast relationship in the Australian Lungfish, Neoceratodus forsteri, elucidated from tomographic data (Sarcopterygii: Dipnoi). More one 10, e0141277 (2015).

  • 28

    Northcutt, R. G., Neary, T. J. & Senn, D. G. Observations on the coelacanth brain Latimeria chalumnae: external anatomy and quantitative badysis. J. Morphol. 155, 181-192 (1978).

  • 29

    Clement, A. M. & Ahlberg, P. E. The first virtual cranial endocast of a lungfish (Sarcopterygii: Dipnoi). More one 9, e113898 (2014).

  • 30

    Dutel, H., Herbin, M., Clément, G. & Herrel, A. Bite force in the existing coelacanth Latimeria: the role of the intracranial joint and the basicranial muscle. Curr. Biol. 25, 1228-1233 (2015).

  • 31

    Nulens, R., Scott, L. and Herbin, M. An updated inventory of all known coelacanth specimens Latimeria spp. Special publication Smithiana 3 (South African Institute for Aquatic Biodiversity, Grahamstown, 2011).

  • 32

    Benno, B. et al. CoelacanthLatimeria chalumnae Smith, 1939) Discoveries and conservation in Tanzania. S. Afr. J. Sci. 102, 486-490 (2006).

  • 33

    Hureau, J.-C. and Ozouf, C. Détermination de l'ge et croissance du coelacanthe Latimeria chalumnae Smith, 1939 (Poisson, Crossopterygien, Coelacanthidé). Cybio two, 129-137 (1977).

  • 3. 4.

    Dutel, H., Herrel, A., Clement, G. & Herbin, M. A re-evaluation of the anatomy of the jaw closure system in the existing coelacanth Latimeria chalumnae. Naturwissenschaften 100, 1007-1022 (2013).

  • 35

    Dutel, H., Herrel, A., Clément, G. and Herbin, M. Redescription of the hyoid apparatus and badociated musculature in the existing coelacanth Latimeria chalumnae: functional implications for food. Anat. Rec. 298, 579-601 (2015).

  • Source link

    Check Also

    Bumblebees Bite the Leaves of Flowerless Plants, to Stimulate Earlier Flowering | Biology

    The bees are based in a large extent in the pollen of the resources of …