A hypothalamic novelty signal regulates hippocampal memory


  • 1.

    Ranganath, c. And Rainer, G. Neural mechanisms to detect and remember novel events. met. Rev. Neurosci. 4, 193202 (2003).

    CAS article Google Scholar

  • 2.

    Van Kestren, MT, Ruiter, DJ, Fernandez, G. & Henson, RN How Schema and Novelty Enhancement Memory Formation. Trend neuroscience. 35, 211–219 (2012).

    Article Google Scholar

  • 3.

    Lisman, JE & Grace, AA Hippocampal-VTA loop: regulates the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    CAS article Google Scholar

  • 4.

    McNamara, CG, Tejero-Cantero, Trou., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampus reactivation and spatial memory persistence. met. Neurosky. 17, 1658–1660 (2014).

    CAS article Google Scholar

  • 5.

    Takeuchi, T. Et al. Lacos coerulus and dopaminergic consolidation in everyday memory. Nature 537, 357–362 (2016).

    ADS CAS Article Google Scholar

  • 6.

    Pan, W.X. and McNaughton, Ann. The supramammillary region: its organization, function, and relationship to the hippocampus. Program. Neurobiol. 74, 127–166 (2004).

    Article Google Scholar

  • 7.

    Supper, CB and Lovell, BB Hypothalamus. Kur. Bye. 24, R1111 – R1116 (2014).

    CAS article Google Scholar

  • 8.

    Wirtshafter, D., Stratford, TR & Shim, I. Placement in a novel environment induces Fos-like immunity in supramammary cells presenting the hippocampus and midbrain. Brain race. 789, 331–334 (1998).

    CAS article Google Scholar

  • 9.

    Ito, M., Shiro, T., Doya, K. And Cecchino, Y. Three-dimensional distribution of Fos-positive neurons in the rat supramammillary nucleus exposed to novel environments. Nowroski. Race. 64, 397402 (2009).

    Article Google Scholar

  • 10.

    Kobayashi, Y. Et al. Genetic dissection of the medial habenula-interpeduncular nucleus pathway in mice. Front. Behav. Neurosky. 7, 17 (2013).

    CAS article Google Scholar

  • 1 1.

    Allen Institute for Brain Science. Alan mouse brain atlas http://mouse.brain-map.org/gene/show/12767 (2006).

  • 12.

    Franklin, K. And Paxinos, G. Mouse brain in stereotaxic coordinates (Academic, 2007).

  • 13.

    Hama, H. Et al. SCALES: an optical clearing palette for biological imaging. met. Neurosky. 18, 1518–1529 (2015).

    CAS article Google Scholar

  • 14.

    Soussi, R., Zhang, N., Tahtakran, S., Houser, CR & Esclapez, M. of the supramammillary-hippocampal pathway. Heterogeneity: evidence for a unique gabergic neurotransmitter phenotype and regional differences. Eur. J. Neurosci. 32, 771–785 (2010).

    Article Google Scholar

  • 15.

    Reijmers, LG, Perkins, BL, Matsuo, N. & Mayford, M. Localization of a stable neurological correlation of associative memory. Science 317, 1230–1233 (2007).

    ADS CAS Article Google Scholar

  • 16.

    Pedersen, NP et al. Supramillary glutamate neurons are a major node of the excitatory system. met. commun. 8, 1405 (2017).

    ADS Article Google Scholar

  • 17.

    Hashimotodani, Y., Karube, F., Yanagwa, Y., Fujiyama, F. & Kano, M. Supramillary nucleus affairs to dentate gyrus co-release glutalate and GABA and potentiate granule cell output. a sales representative. 25, 2704–2715 (2018).

    CAS article Google Scholar

  • 18.

    Co-working with Tritsch, NX, Granger, AJ & Sabatini, BL Mechanics and GABA. met. Rev. Neurosci. 17, 139–145 (2016).

    CAS article Google Scholar

  • 19.

    Bohringer, R. Et al. Chronic loss of CA2 transmission leads to hippocampus hyperactivity. Neuron 94, 642–655 (2017).

    CAS article Google Scholar

  • 20.

    Rezendez, SL et al. Social stimuli induce the activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 40, 2282–2295 (2020).

    CAS article Google Scholar

  • 21.

    Wu, Z., Ottery, AE, Bergen, JF, Watabe-Uchida, M. And Dulac, CG galanin neurons in the medial region control parental behavior. Nature 509, 325–330 (2014).

    ADS CAS Article Google Scholar

  • 22.

    Strange, BA, Witter, MP, Lein, ES and Moser, EI functional organization of the hippocampus longitudinal axis. met. Rev. Neurosci. 15, 655–669 (2014).

    CAS article Google Scholar

  • 23.

    Letzeb, J.K., Letzeb, S., Moser, M.B. & Moser, EI pattern isolation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007).

    ADS CAS Article Google Scholar

  • 24.

    McHugh, TJ et al. Dentate gyrus NMDA receptors mediate rapid pattern dissociation in the hippocampal network. Science 317, 94–99 (2007).

    ADS CAS Article Google Scholar

  • 25.

    Wintzer, ME, Boehringer, R., Polygalov, D. & McHugh, TJ The hippocampus CA2 ensemble is sensitive to contextual changes. J. Neurosci. 34, 3056–3066 (2014).

    CAS article Google Scholar

  • 26.

    Chiang, MC, Huang, AJY, Wintzer, ME, Ohshima, T. And McHugh, T.J. A role for CA3 in social recognition memory. Behav. Brain race. 354, 22–30 (2018).

    CAS article Google Scholar

  • 27.

    Hitti, FL & Siegelbaum, SA The hippocampus CA2 region is essential for social memory. Nature 508, 88–92 (2014).

    ADS CAS Article Google Scholar

  • 28.

    Piskorski, RA et al. Age-dependent specific changes in the area of ​​the hippocampus and Ca2 of social memory deficits in a mouse model of 22q11.2 deletion syndrome. Neuron 89, 163–176 (2016).

    CAS article Google Scholar

  • 29.

    Alexander, GM et al. Social and novel contexts have modified the hippocampus CA2 representation of space. met. commun. 7, 10300 (2016).

    ADS CAS Article Google Scholar

  • 30.

    Smith, AS, Williams Avram, SK, Cymerblit-Saba, A, Song, J & Young, WS Targeted activation of the hippocampal Ca2 region strongly enhances social memory. Acquire. Psychiatry 21, 1137–1144 (2016).

    CAS article Google Scholar

  • 31.

    Meera, T. Et al. A hippocampal circuit connecting the dorsal CA1 important abdominal CA1 to social memory dynamics. met. commun. 9, 4163 (2018).

    ADS Article Google Scholar

  • 32.

    Chen, S., et al. Near-infrared deep brain stimulation via upcycled nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    ADS CAS Article Google Scholar

  • Leave a Reply

    Your email address will not be published.